9 research outputs found

    LDR: A Package for Likelihood-Based Sufficient Dimension Reduction

    Get PDF
    We introduce a new mlab software package that implements several recently proposed likelihood-based methods for sufficient dimension reduction. Current capabilities include estimation of reduced subspaces with a fixed dimension d, as well as estimation of d by use of likelihood-ratio testing, permutation testing and information criteria. The methods are suitable for preprocessing data for both regression and classification. Implementations of related estimators are also available. Although the software is more oriented to command-line operation, a graphical user interface is also provided for prototype computations.

    LDR: A Package for Likelihood-Based Sufficient Dimension Reduction

    Get PDF
    We introduce a new MATLAB software package that implements several recently proposed likelihood-based methods for sufficient dimension reduction. Current capabilities include estimation of reduced subspaces with a fixed dimension d, as well as estimation of d by use of likelihood-ratio testing, permutation testing and information criteria. The methods are suitable for preprocessing data for both regression and classification. Implementations of related estimators are also available. Although the software is more oriented to command-line operation, a graphical user interface is also provided for prototype computations

    Sufficient dimension reduction for longitudinally measured predictors

    Get PDF
    We propose a method to combine several predictors (markers) that are measured repeatedly over time into a composite marker score without assuming a model and only requiring a mild condition on the predictor distribution. Assuming that the first and second moments of the predictors can be decomposed into a time and a marker component via a Kronecker product structure that accommodates the longitudinal nature of the predictors, we develop first-moment sufficient dimension reduction techniques to replace the original markers with linear transformations that contain sufficient information for the regression of the predictors on the outcome. These linear combinations can then be combined into a score that has better predictive performance than a score built under a general model that ignores the longitudinal structure of the data. Our methods can be applied to either continuous or categorical outcome measures. In simulations, we focus on binary outcomes and show that our method outperforms existing alternatives by using the AUC, the area under the receiver?operator characteristics (ROC) curve, as a summary measure of the discriminatory ability of a single continuous diagnostic marker for binary disease outcomes. Published 2011. This article is a US Government work and is in the public domain in the USA.Fil: Pfeiffer, R. M.. National Cancer Institute; Estados UnidosFil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Bura, Efstathia. George Washington University/department Of Statistics; Estados Unido

    Sufficient dimension reduction for compositional data

    No full text
    Recent efforts to characterize the human microbiome and its relation to chronic diseases have led to a surge in statistical development for compositional data. We develop likelihood-based sufficient dimension reduction methods (SDR) to find linear combinations that contain all the information in the compositional data on an outcome variable, i.e., are sufficient for modeling and prediction of the outcome. We consider several models for the inverse regression of the compositional vector or transformations of it, as a function of outcome. They include normal, multinomial, and Poisson graphical models that allow for complex dependencies among observed counts. These methods yield efficient estimators of the reduction and can be applied to continuous or categorical outcomes. We incorporate variable selection into the estimation via penalties and address important invariance issues arising from the compositional nature of the data. We illustrate and compare our methods and some established methods for analyzing microbiome data in simulations and using data from the Human Microbiome Project. Displaying the data in the coordinate system of the SDR linear combinations allows visual inspection and facilitates comparisons across studies.Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina. Université de Technologie de Troyes; FranciaFil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; ArgentinaFil: Duarte, Sabrina Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; ArgentinaFil: Pfeiffer, Ruth M.. National Cancer Institute; Estados Unido
    corecore